Innovative Approach for Sustainable and Low-Waste Production of ⁹⁹Mo for Radiodiagnostics using an Accelerator-Based Neutron Source

Doruntin Shabani^{1,2*}, Christoph Langer¹, Michael Butzek¹, Erik Strub³, Marco Michel³, Thomas Gutberlet⁴, Eric Mauerhofer⁴, Paul Zakalek⁴, Clemens Walther⁵, David Ohm⁵, Andreas Dragoun^{3,6}, Johannes Ermert⁶, Bernd Neumaier^{3,6,7}

¹FH Aachen University of Applied Sciences, Aachen, Germany ²University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Nuclear Physics, Cologne, Germany ³University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Nuclear Chemistry, Cologne, Germany ⁴Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science (JCNS-HBS), Jülich, Germany ⁵Leibniz University Hannover, Institute of Radioecology and Radiation Protection, Hamburg, Germany ⁶Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine – Nuclear Chemistry (INM-5), Jülich, Germany ⁷University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Cologne, Germany *This work is supported by the German Federal Ministry of Education and Research (BMBF) under Grant No. 02NUK080B

Introduction and Motivation

Approximately 80% of the world's nuclear medicine examinations, totaling about 40 million annually, utilize ^{99m}Tc, with Europe responsible for 25% of this demand. In Germany alone, nearly 60,000 examinations are conducted weekly, consuming almost 10% of the global yearly supply of ^{99m}Tc. The objective of this project is to explore the production of 2400 Ci of ⁹⁹Mo over a 6-day period, aiming to meet the demand for ^{99m}Tc in Germany.

Focus on general ⁹⁹Mo/^{99m}Tc generator system

• Alumina (Al_2O_3) column

- \succ Adsorption behavior of ⁹⁹Mo, elution efficiency of ^{99m}Tc
- > Optimization and purification for medical use

Modification of chemical separation of ^{99m}Tc from ⁹⁹Mo

Adjustment of the ⁹⁹Mo/^{99m}Tc generator system

- > Neutron generation by 70 MeV protons impinging on a tantalum target (3 kW/cm²)
- Suitable moderator and reflector material
- > Activation of natural Mo sample by thermal and **epithermal** neutrons

Optimization of all parameters to achieve a total activity of 2400 6-day Ci of ⁹⁹Mo

- Shielding for the prompt irradiation dosage
- \succ Suitable material composition for safety and handling
- > Extraction mechanism of the TMR out of the shielding
- Storage and disposal of activated materials

Development of a Monte Carlo model for radiation field calculations

FLUKA Model

- > Simple operation
- > Fast process
- Low waste production
- \succ Low chemical treatment of the sample

JÜLICH Forschungszentrum

- > Experimental validation of Monte Carlo simulation codes • **PHITS**, FLUKA
- \succ TMR design for maximizing the integral epithermal flux
- > Automatic handling and transport system for ⁹⁹Mo-irradiated samples

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

 Scoring of the particle fluxes (neutron, proton, photon, ...)

- Calculation of the ambient does rates Ο
- Comparison to reactor based irradiation scenarios

Federal Ministry of Education and Research