Innovative approach for sustainable and low-waste production of ⁹⁹Mo-based radiodiagnostics using accelerator-based neutron source

<u>Doruntin Shabani</u>^{1*}, Christoph Langer¹, Michael Butzek¹, Erik Strub², Marco Michel², Thomas Gutberlet³, Eric Mauerhofer³, Clemens Walther⁴, David Ohm⁴, Andreas Dragoun^{2,5}, Johannes Ermert⁵, Bernd Neumaier^{2,5,6}

¹FH Aachen University of Applied Sciences, Aachen, Germany

²University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Nuclear Chemistry, Cologne, Germany

³Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science (JCNS-HBS), Jülich, Germany ⁴Leibniz University Hannover, Hannover, Germany

⁵Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine – Nuclear Chemistry (INM-5), Jülich, Germany

⁶University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Cologne, Germany

*E-mail: shabani@fh-aachen.de

*This work is supported by the German Federal Ministry of Education and Research (BMBF) under Grant No. 02NUK080B

Keywords: Compact accelerator-based neutron sources, medical isotope production, activation, low-waste production, ⁹⁹Mo from natural Mo, neutron capture method

Nuclear medicine diagnostics that are integral to modern healthcare, heavily rely on the radionuclide ⁹⁹Mo, traditionally produced in nuclear reactors through the fission of ²³⁵U [1, 2, 3]. However, the complex radiochemical processing involved generates substantial radioactive waste, necessitating a shift towards more sustainable practices. This poster presents the ⁹⁹Mo Best joint project, an initiative focused on developing an innovative, cost-efficient concept for the production and utilization of ⁹⁹Mo-based radiodiagnostics, utilizing the ⁹⁸Mo(n, γ)⁹⁹Mo reaction eliminating fissile materials and minimizing radioactive waste.

The project comprises three key sub-projects:

- 1. **Process Optimization:** This involves refining the processes for generating ⁹⁹Mo-based radiodiagnostics, as well as improving their processing and utilization in clinical settings.
- 2. **Neutron Target Technology:** Developing high neutron flux density neutron target technology is crucial for irradiation with reduced radiation doses, ensuring safe handling and processing of Mo samples post-irradiation.
- 3. **Radiation Protection and Disposal:** Addressing safety concerns, this sub-project aims to determine radiation protection and disposal issues pertinent to the novel ⁹⁹Mo production process, ensuring a secure and sustainable approach.

This comprehensive approach aims to create a paradigm shift in the field of nuclear medicine by offering a sustainable and efficient alternative to traditional ⁹⁹Mo production methods, mitigating environmental impact and advancing the application of accelerator-based neutron radiation sources in medical radioisotope production.

References

- 1. NEA (2019), "The Supply of Medical Radioisotopes: 2019 Medical Isotope Demand and Capacity Projection for the 2019-2024 Period", OECD Publishing, Paris.
- 2. Deutscher Bundestag, Drucksache 17/3142, 2010
- 3. Jaroszewicz J, Marcinkowska Z, Pytel K (2014) Production of fission product ⁹⁹Mo using highenriched uranium plates in Polish nuclear research reactor MARIA: Technology and neutronic analysis. Nukleonika 59(2):43-52