Hidden Magnetic Texture in the Pseudogap Phase of the High-Tc Superconducting YBa2Cu3O6+x

07.10.2025, 14:00
30m
Evangelische Akademie Tutzing

Evangelische Akademie Tutzing

Schloßstraße 2+4, 82327 Tutzing, Germany
Invited talk Frustrated spin systems Unconventional superconductivity

Sprecher

Dalila Bounoua (Laboratoire Léon Brillouin, CEA-CNRS, Université Paris-Saclay, Gif sur Yvette, France)

Beschreibung

The origin of the enigmatic pseudogap phase of high-Tc superconducting cuprates remains an unsolved mystery. Over the last decades, polarized neutron diffraction (PND) revealed that the pseudogap state hosts an intra-unit cell (or q=0) magnetism preserving the lattice translational (LT) symmetry and breaking the time-reversal and parity symmetries [1]. This q=0 magnetism is interpreted in terms of loop current (LC) patterns accompanied by anapoles [1].
Our PND measurements in YBa2Cu3O6+x with different hole doping levels [2-4] uncover a novel hidden magnetism that may be crucial to elucidate the pseudogap puzzle. This short-range magnetism is carried by the CuO2 layers and settles in at T*, the pseudogap onset temperature. Distinct from the q=0 magnetism, the related magnetic signal appears at the planar wavevectors q=(0.5,0) and (0,0.5), yielding a (2x2) quadrupling of the magnetic unit cell within the [a,b] plane (q=½ magnetism). The associated magnetic moment is predominantly pointing perpendicular to the CuO2 planes, consistent with the LC picture. Finally, the q=½ magnetism vanishes in the overdoped regime, following the doping dependence of the pseudogap [3].
The q=0 and q=½ magnetisms could be embedded within a single spread-out magnetic texture of LCs. Such a magnetic texture could be consistent with the theoretical proposal of LC supercells, breaking the LT and able to reconstruct the Fermi surface [5]. The existence of such broad entities reveals an unexpected aspect of the pseudogap physics, bringing new pieces to the puzzle of this enigmatic state of matter.

[1] P. Bourges et al., C.R.Phys, 22, 1 (2021) 7-31.
[2] D. Bounoua et al., Comm.Phys, 5 (2022) 268 ;
[3] D. Bounoua et al, Phys.Rev.B, 108 (2023) 214408.
[4] W. Liège, D. Bounoua et al., (in preparation)
[5] C.M. Varma, Phys.Rev.B, 99 (2019) 2245.

Autor

Dalila Bounoua (Laboratoire Léon Brillouin, CEA-CNRS, Université Paris-Saclay, Gif sur Yvette, France)

Co-Autoren

Dr. Frédéric Bourdarot (Institut Laue-Langevin, Grenoble, France) Dr. Jun Xian (Department of Physics and Astronomy, Shanghai Jiao Tong University , Shanghai , China) Dr. Lin Shan Guo (Department of Physics and Astronomy, Shanghai Jiao Tong University , Shanghai , China) Dr. Lucile Mangin-Thro (Institut Laue-Langevin, Grenoble, France) Dr. Martin Boehm (Institut Laue-Langevin, Grenoble, France) Dr. Paul Steffens (Institut Laue-Langevin, Grenoble, France) Dr. Philippe Bourges (Laboratoire Léon Brillouin, CEA-CNRS, Université Paris-Saclay, Gif sur Yvette, France) Herr Toshinao Loew (Max Planck Institute for Solid State, Stuttgart, Germany) Dr. Victor Balédent (Laboratoire de Physique des Solides, Orsay, France) Herr William Liège (Laboratoire Léon Brillouin, CEA-CNRS, Université Paris-Saclay, Gif sur Yvette, France) Prof. Xin Yao (Department of Physics and Astronomy, Shanghai Jiao Tong University , Shanghai , China) Dr. Yvan Sidis (Laboratoire Léon Brillouin, CEA-CNRS, Université Paris-Saclay, Gif sur Yvette, France)

Präsentationsmaterialien