16.–18. Sept. 2024
RWTH Aachen
Europe/Berlin Zeitzone

Distorting an antiferromagnetic kagome lattice: Magnetism of single-crystalline clinoatacamite

17.09.2024, 11:30
20m
PPS-1

PPS-1

Sprecher

Leonie Heinze (Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Germany)

Beschreibung

The spin-$1/2$ Heisenberg model on the antiferromagnetic kagome lattice is one of the fundamental models in frustrated quantum magnetism with a predicted quantum spin liquid (QSL) ground state, spinon excitations and a complex sequence of magnetization plateaus in applied magnetic fields [1-3]. From an experimental viewpoint, the mineral herbertsmithite with uniform couplings in the kagome layer stands out as candidate material featuring a QSL ground state [4]. Recent advances in quantum magnetism also explicitly cover deformed kagome lattices leading to many different motifs of non-uniform exchange couplings containing novel physics (see, for instance, Refs. [5,6]).

Here, we present a combined experimental and theoretical study on clinoatacamite, Cu$_2$Cl(OH)$_3$ [7], a mineral which is closely related to herbertsmithite. By means of density-functional theory we have derived the dominant magnetic exchange paths in this material forming non-uniform antiferromagnetic kagome layers of Cu sites with weak ferromagnetic coupling to the interlayer Cu site. Experimentally, we have investigated the zero-field magnetic phase diagram of clinoatacamite by means of thermodynamic measurement techniques as well as neutron diffraction using for the first time single-crystalline material. In agreement with earlier studies, we have found a transition of little entropic change at $T_\mathrm{N} = 18.1~\mathrm{K}$ (with an order parameter developing below this temperature) [8]. Further, we have resolved for the first time a sequence of two close-lying transition anomalies at $6.2$ and $6.4~\mathrm{K}$, which leads to a large entropy change in the material. We have refined the magnetic structure at $1.7~\mathrm{K}$ based on single-crystal neutron diffraction data and present inelastic neutron scattering results revealing the low-energy spin excitations in the same temperature region.

[1] C. Broholm et al., Science 367, eaay0668 (2020).
[2] L. Balents, Nature 464, 199 (2010).
[3] S. Nishimoto et al., Nat. Commun. 4, 2287 (2013).
[4] P. Khuntia et al., Nat. Phys. 16, 469 (2020).
[5] O. Janson et al., Phys. Rev. Lett. 117, 037206 (2016).
[6] K. Matan et al., Nat. Phys. 6, 865 (2010).
[7] J. D. Grice et al., Can. Mineral. 34, 73 (1996).
[8] X. G. Zheng et al., Phys. Rev. Lett. 95, 057201 (2005).

Hauptautor

Leonie Heinze (Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Germany)

Co-Autoren

Harald O. Jeschke (Research Institute for Interdisciplinary Science, Okayama University, Japan) Manfred Reehuis (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany) Jackson L. Allen (Institute for Superconducting and Electronic Materials and School of Physics, University of Wollongong, Australia) Bachir Ouladdiaf (Institute Laue-Langevin, France) Ketty Beauvois (Institute Laue-Langevin, France) Ralf Feyerherm (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany) Fabiano Yokaichiya (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany) Dirk Menzel (Institut für Physik der Kondensierten Materie, TU Braunschweig, Germany) Anja U. B. Wolter (Leibniz Institute for Solid State and Materials Research IFW Dresden, Germany) Kirrily C. Rule (Australian Nuclear Science and Technology Organisation, Australia) Stefan Süllow (Institut für Physik der Kondensierten Materie, TU Braunschweig, Germany)

Präsentationsmaterialien